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Abstract. We report both two-dimensional numerical simulations and experimental results that confirm
the robustness of a new method for inhibiting vortex shedding associated to the Bénard–von Kármán (BvK)
instability in the wake of a cylinder. Using the SIMPLER algorithm on a 2D channel, we solve the Navier-
Stokes equations and we show that pressure suction at the front stagnation point of a circular cylinder,
modelled here through a point sink located at the front stagnation point, can completely suppress the
Bénard–von Kármán instability for super-critical Reynolds numbers. Comparison with recent experimental
results are in close agreement.

PACS. 47.27.Vf Wakes – 47.20.-k Hydrodynamic stability – 47.27.Rc Turbulence control

Introduction

Instabilities in non linear systems driven far from equilib-
rium often consist of transitions from motionless states
to one varying periodically in space or time. Actually
a lot of beautiful examples have become very popular,
like Rayleigh–Bénard convection, waves in shear flows,
Couette–Taylor flow, oscillatory chemical reactions and
the well known Bénard von Kármán (BvK) instability.

The onset of periodic structures in these systems when
driven by spatially homogeneous or time constant forc-
ing, corresponds typically to a bifurcation, characterized
by one or several modes that become unstable. In par-
ticular, pattern forming instabilities of vortical nature,
such the Bénard–von Kármán (BvK) instability can in-
duce a phenomenon which generates strong transverse
force fluctuations originated by the periodic vortex shed-
ding from bluff bodies. The BvK instability can be gen-
erated in the wake of a circular cylinder of diameter d
and length L, and it is commonly accepted that for large
aspect ratios, Γ = L/d � 1, the onset for vortex shed-
ding occurs for a critical value of the Reynolds number
(Re = Uod/ν, where Uo, ν are the kinematic viscosity
and mean fluid velocity respectively) close to Rec ∼ 50
[1,2]. At low Reynolds numbers, of order one, a reversed
flow first occurs near the rear stagnation point of the
cylinder and leads to the formation of two attached ed-
dies in the near wake of the cylinder, thus breaking the
upstream-downstream symmetry. The two attached eddies
grow in size as the Reynolds number is increased, and at
a Reynolds number close to the threshold Re ∼ Rec, the
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flow ceases to be symmetric about the centerline and sta-
tionary; it settles into a time periodic regime in which
vortices are shed alternatively from the two sides of the
cylinder, giving rise to the von Kármán vortex street [3].
Vortex shedding corresponds to a limit–cycle oscillation of
the near wake described by a Stuart–Landau equation [1].

Controlling the wake of a cylinder by inhibiting the
BvK instability has motivated a lot of studies. Two forms
of wake control are currently proposed in the literature,
called respectively active or passive methods. In the group
of passive methods, inserting a splitter plate in the near
wake of a cylinder [4], performing steady or periodic suc-
tion from the rear circulation zone [5], heating the cylin-
der, locating a secondary cylinder in the near wake, im-
posing large–amplitude transverse oscillations or angular
rotation to the cylinder at an appropriate frequency, can
at least modify or suppress vortex shedding [6–8]. In the
group of active methods, an electronic feedback is achieved
with the aid of a pressure (or velocity) sensor, by apply-
ing for instance acoustic forcing [9,10] or using a pair of
blowing–suction actuators near the circulation region [9].

Most of the above methods, active or passive, have
tried to control the BvK instability by applying a local
perturbation directly in the near wake of the cylinder.
This is a quite natural idea if we have in mind the meth-
ods used to control boundary layer separation by trying to
inhibit adverse pressure gradients along the trailing edge
of solid bodies in a flow field. Another concept that may
be invoked to justify a perturbation directly applied to
the wake is the one of absolute versus convective instabil-
ity [11]. Perturbing the wake, for instance using a blowing
actuator at the rear stagnation point, one may hope to
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transform an absolute instability of the near wake into a
convective one.

The control method here analyzed [12] differs from the
ones mentioned above. We look for a global modification
of the flow field around the cylinder changing its pressure
distribution. Normally, the average pressure in the near
wake is smaller than the one near the front stagnation
point. This difference with the potential flow solution, is
due to boundary layer separation that generates a vortic-
ity filled wake in which the pressure is low. The general
idea, as expressed in [12] is thus to compensate this pres-
sure difference by decreasing the pressure at the front stag-
nation point, say pf (t). This was achieved through a local
suction, which in turn decreases the average local pres-
sure near that point. The front stagnation point is thus
suppressed and bifurcates into a pair of stagnation points
located symmetrically with respect to the flow centerline,
at angles ±θo, and shifted downstream as the amount of
suction is increased. We have shown using potential flow
theory, that this modifies the pressure distribution around
the whole cylinder such that the streamlines shrink in the
wake of the cylinder. This externally imposed asymmetry
is thus likely to compensate the one which results from
boundary layer separation and consequently to delay the
onset of the BvK instability.

Using the control volume formulation and an iterative
semi-implicit scheme [13] on a 2D equally spaced grid,
we solve the time varying Navier Stokes equations on a
rectangular channel with a circular cylinder inside. The
control method is formulated as close as possible with the
experiments, incorporating a local sink of strength Q at
the front stagnation point of the cylinder.

Formulation

Problem description

The physical situation in Figure 1a, corresponds to a rect-
angular channel of aspect ratio Ly/Lx = 1.87. A circular
cylinder of diameter d, located two diameters apart from
the channel entrance, is simulated through the block-off
procedure for irregular geometries [13]. The 2D governing
equations for fluid velocity (u, v) and pressure p, retain-
ing their time derivatives in dimensionless form and index
notation are,

∂ui

∂xi
= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1
Rex

∇2ui. (2)

The channel Reynolds number is defined as
Rex = v0Lx/ν, where v0, ν are the streamwise ve-
locity at the channel entrance and the kinematic viscosity
respectively. The cylinder based Reynolds number is
Re = Rex(d/Lx). Variables like time, velocity, pressure
were scaled using v0/Lx, 1/v0, ρv2

0 , as reference quantities
respectively, where ρ is the fluid density. The Cartesian

(a) (b)

Fig. 1. (a) Physical configuration. A 2D channel of dimen-
sions (Lx, Ly) = (16d, 30d), discretized with a grid of 321×601
points, where a cylinder of diameter d is located near the chan-
nel’s entrance at l = 2d. (b) Schematic theoretical prediction
from potential theory of the bifurcated position, θo, for two
new symmetric stagnation points, when a sink of strength Q
is located at position (r, π). Singular stream function Ψ = 0 is
also shown.

coordinates are scaled with the transverse channel
size Lx, and reference axes are such that streamwise
direction is y (v velocity) and transverse direction is x (u
velocity). Governing equations were solved with our code
in primitive variables using the finite volume formulation
and the SIMPLER algorithm [13–15]. Discretization of
the physical domain incorporates a two–dimensional,
uniform and staggered grid of 321 × 601 points. Fluid
velocity vanishes on rigid walls and Newmann conditions
are imposed at the channel’s exit. Boundary conditions
for fluid velocity in non dimensional form (u, v) are the
following:

y = 0 (0 ≤ x ≤ Lx) → [u = 0, v = 1] (3)

y = Ly (0 ≤ x ≤ Lx) →
[

∂u
∂y = 0, ∂v

∂y = 0
]

(4)

x = 0, Lx (0 ≤ y ≤ Ly) → [u = 0, v = 0]. (5)

Spatial and time steps of δx = δy = 3.125 × 10−3 and
δt = 10−3 respectively, give both grid independent solu-
tions and enough resolution for the wavy behavior (vortex
shedding) of the developing BvK instability.

Control method

Theoretical solution for the flow potential φ(r) originated
by a local sink of strength Q in two dimensions, satisfies
the Laplace equation ∇2φ = 0 and the overall velocity
field v = −∇φ decays typically as 1/r. where r = |r| is the
distance from sink. Its influence on the physical domain
is considerably stronger than equivalent solution in three
dimensions, where velocity decreases as 1/r2.
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The two dimensional form of a local sink is the key of
our control method. In our 2D numerical runs, the con-
trol method is mathematically modelled incorporating a
point sink of strength Q at the cylinder surface exactly
were the front stagnation point occurs (see Fig. 1). Nu-
merically, we impose a local sink of strength Q in the gov-
erning equations, through the source terms arising from
the discretized equations, in particular from the mass con-
servation equation [16]. The sink is imposed only at the
front stagnation point of the cylinder, i.e., only over one
grid point.

An inviscid model of the 2D flow field around a cir-
cular cylinder with a sink located at the front stagnation
point has been drawn from potential theory. Details of the
theoretical calculations can be found in [12]. As a result,
the steady state solution of the stream function for a given
sink strength Q shows that the front stagnation point is
suppressed and bifurcates into a pair of stagnation points
located symmetrically with respect to the flow centerline,
at angles ±θo, and shifted downstream as the amount of
suction is increased (see Fig. 1). The theoretical solution,
as shown in [12], can be expressed as

θo = arccos
(

Q

4πdv0
− 1

)
.

These new stagnation points can be found from our nu-
merical solutions, by looking for local maxima of surface
pressure at the cylinder surface [16]. Our local sink model
was compared to the inviscid theory through the contours
map for the stream function Ψ(x, y) in two dimensions.
Overall flow solutions were found for the steady state ve-
locity field generated by a local (point-like) sink interact-
ing with a uniform and parallel velocity flow v0 imposed
at the channel’s entrance (without cylinder). These nu-
merical results (not shown here), in very close agreement
with the potential solution, where used as test solutions
of grid spacing for the numerical code [16].

We will see that, as predicted by potential the-
ory [12,16], if we operate the complete model; sink + cylin-
der, at Reynolds numbers greater than the critical value,
Re ≥ Rec, (Rec ∼ 50) we found that, both the bifurcation
phenomena associated to the new stagnation points really
occurs and if the sink strength is greater than a critical
value (Q > Qc), vortex shedding suppression takes place,
inhibiting the BvK instability.

Results

Natural BvK instability

The choice of the channel aspect ratio, cylinder size,
and grid size were found computing the overall solution
for Reynolds numbers Re below and above the critical
one Rec. Stable and unstable states of the system can be
detected recording the transverse fluid velocity u(t) some
diameters apart downstream the cylinder. The monitor-
ing point (or sensor’s location) is located at the middle of

the channel but can take different streamwise y positions
(measured in cylinder diameters) downstream the body.

Our choice to validate the code has been to compute
the characteristic eigen values associated to the IBvK in-
stability for different Reynolds numbers. For short times
after instability onset, linear theory predicts that instabil-
ity will occur when the most unstable mode, σ = σr + jω,
crosses the imaginary axis, i.e., when σr > 0. The asso-
ciated frequency ω is not zero, as proved in [1,2], which
corresponds to a Hopf bifurcation. These runs are very
time consuming, because as we approach the instabil-
ity threshold, the characteristic growth rate scales as
τ = σ−1

r ∼ (Re − Rec)−1 and one must wait very long
times (long transients) to record an acceptable evolution,
in this case, of u(t).

To obtain these parameters in our simulation, we im-
posed a impulsive starting flow around the circular cylin-
der and then solve the full Navier-Stokes equations. As
in experiments, the impulsive starting flow is an appro-
priate way to excite the system. Numerically we impose
a step function for the channel entrance flow velocity as
v0(t) = v0Θ(t), where Θ(t) is the Heavise step function.

The system response (u(t)) for short times is of ex-
ponential form, u(t) ∼ eσt and both envelopes and in-
stantaneous frequency, can be easily computed using the
analytic signal representation of u(t), as explained in the
next section.

These results are shown in Figure 2. The evolution of
the characteristic shedding frequency ω is plotted in the
form of Roshko number, Ro = fd2/ν, where f = ω/2π, as
a function of Reynolds number (Fig. 2a). The sub-critical
and super-critical regimes follow a linear relationship, but
display a different slope. The slope ratio found is

Γ =
∆σr<0

∆σr>0
= 0.74

where ∆σ<0, ∆σ>0 are the slopes for the sub-critical and
super-critical curves respectively. This value can be also
computed from a recent experimental work [2] where a
very close agreement is found.

Figure 2b shows the corresponding growth rates for
the sub-critical (σr < 0) and super-critical (σr > 0) re-
gions. A linear evolution with Reynolds number is found
as predicted by Landau theory. The critical Reynolds
number can be obtained by extrapolation, σr → 0, from
both sides. Critical values are Rec(σr < 0) = 57.4 and
Rec(σr > 0) = 56.8, differing in 1 %, uncertainty asso-
ciated to the accuracy of logarithmic linear fit over the
exponential part of the envelope of transverse velocity.

These critical Reynolds numbers are slightly higher
than the common value Re ∼ 50 [1,2], indicating that
blockage effects associated to our channel dimensions are
not negligible. Blockage effects are such that reducing the
ratio Lx/d will rise the critical value, Rec, associated to
the onset of the BvK instability. To determine a limit-
ing critical Reynolds number, one can consider a block-
age correction procedure, computing systematically Rec

as a function of the ratio d/Lx and then extrapolate to
d/Lx → 0, but this is far beyond the scope of this work.
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(a)

(b)

Fig. 2. Typical parameters obtained for the BvK instability
for impulsive starting flow around the circular cylinder. (a) The
Roshko, Ro = fd2/ν, number as a function of Reynolds num-
ber, Re, for the sub-critical and super-critical regions. Two dif-
ferent slopes occur for the best fit between shedding frequency
and Reynolds number. We show two sub-plots for typical stable
and unstable eigen modes, through the transverse component
of fluid velocity. (b) Corresponding characteristic stable and
unstable growth rates τ as a function of Reynolds number Re.
The arrow indicates critical Reynolds number Rec ∼ 58.

A closer look of the time evolution of the pattern form-
ing instability is shown in Figure 3, where we plot a se-
quence of vorticity contours, ω = ∇ × v, corresponding
to a single time period (the inverse of the Strohual fre-
quency) of the characteristic vortex shedding at Re =
100. Here we see an alternate shedding of local regions
of intense vorticity which are characteristic of the BvK
instability. These high vorticity regions, of opposite cir-
culation, are advected by the mean flow and leave the
computational domain without any deformation, which
assures us on the right use of Newmann boundary con-
ditions at the channel’s exit. The reader should note that

Fig. 3. Single period of vortex shedding in the form wake
vorticity � = ∇× v contours at Reynolds number Re = 100.

another signature of the BvK instability is that, increas-
ing the Reynolds number produce a decrease of the char-
acteristic wavelength, λω , associated to the wavy pattern
(Strouhal frequency increases) as it is documented on dif-
ferent experiments [17–19].

Controlling BvK instability

Now, in order to suppress vortex shedding at a given
Reynolds number, Re > Rec, we should start the control
method; this is done turning on the local sink at the front
stagnation point of the cylinder. Prior to that, we must be
careful and find the final periodic flow field obtained at the
working Reynolds number, say at t = t0. After that, the
sink is activated through a time (τv) limited step function,
i.e., Q(t) = Q Θ(t), where,

Θ(t) =
{

1, if t0 < t < (t0 + τv)
0, otherwise

The result is clearly seen in Figure 4. At Re = 100, af-
ter the instability attained its saturated regime, which
consist of a constant amplitude periodic oscillating flow
field, the sink is turned on abruptly following the step
function indicated above. Seven sink strength values were
used, ranging from Q = 0.04 → 0.1. For this case, when
Q > 0.04 the flow field becomes stable during the sink
on-operation. During that period of time, denoted as τv,
the BvK instability displays a similar behavior. At first,
when the sink is started, the instability is damped and its
associated vortex shedding is being suppressed. To make
the point, we plot the signal corresponding to the trans-
verse fluid velocity u(t), which displays that characteristic
damping, which was found to depend on the sink strength.
The higher Q the shorter is the characteristic time, as we
see if we compare the oscillating patterns. This fact im-
plies that the original eigen value spectrum for Re = 100
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Fig. 4. Wake behavior of the transverse rms fluid velocity u(t) at 2 diameters downstream the cylinder end. These signals are
found when the BvK instability is virtually modulated by an on-off operation of the local sink. The on-off operation of the sink
is shown here as a TTL or square signal for t ∈ [5, 15]. (a) Re = 100, Q = 0.04 (b) Re = 100 Q = 0.05, (c) Re = 100, Q = 0.07.
At constant Re, as the sink strength Q increases, the unstable mode becomes stable. (d) A characteristic growth rate associated
to new eigen values, σ•

r , show that a critical Q exists, and (e) if Q increases, the associated new shedding frequency f• is found
to decrease.

has moved to the left part of the complex plane (σr, ω)
such that σr < 0. We must recall that the effect is an
overall one, i.e., the instability is really suppressed at any
location on the computational domain. There exists how-
ever a time lag between the switching of the step and what
it is measured at the monitoring point. This effect is ex-
plained because the oscillating pattern is always advected
by the mean flow [3].

It is clear that the effect of the local sink is to sup-
press the developing instability, however there exists a
critical sink strength, Qc, over which the BvK instabil-
ity is well damped. As it was shown in a previous exper-
imental work [12], for each given super-critical Reynolds
number, there is associated a critical strength. If Q > Qc

the control method works fine, however Qc seems to in-
crease with the value of Re. In our case, the determination
of critical Qc values is not simple. To look for a critical
Qc value, we must run our numerical simulation for a con-
stant Re value, recording the wake velocity in time. Start-
ing with an arbitrary value of Q < Qc, we increase Q in
small steps until the characteristic oscillatory velocity sig-
nal dies out. Figure 5a shows the time recording of this
situation. Varying Q between the interval [0.01, 0.06] at
Re = 100 we observe a systematic decrease of the am-
plitude of wake fluctuating transverse velocity, u(t). The
effect is appreciated over the two components of the wake

velocity. The effect on the streamwise velocity component
is dependent on the sensor position. An increase of v(t) is
found at one diameter (1d) from the cylinder end, however
a net decrease at 2d, 4d and 8d is observed. The near wake
shows an increase in the average streamwise fluid velocity,
v(t), due to the local acceleration created by the shrink
of the stream lines near the cylinder end, so the wake’s
streamwise velocity must increase, as it is observed. How-
ever far from the cylinder, the overall wake carries less
fluid as we have pumped a certain quantity with the sink.
So, the average flow rate decreases, and consequently the
streamwise mean velocity.

An accurate criteria, on the transverse fluid velocity,
was used to proceed to increase or to decrease the sink
strength in small steps, δQ ∼ 0.01. We computed the en-
velope of u(t) at the monitoring point, using a Hilbert
transform to create and analytic signal [20] of the real
one u(t). This can be done as follows,

ua(t) = u(t) + j · H[u(t)]

where,

H[u(t)] = V P
1
π

∫ ∞

−∞

u(t′)
t − t′

dt′
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Fig. 5. The effect of increasing sink strength Q on the wake
velocity at Re = 100. Sink strength Q varies from Q = 0.01 to
Q = 0.06. (a) Time series for the transverse component of fluid
velocity, u(t) at (x, y) = (0.5, 0.5) versus time for each value of
sink strength Q. (b) Evolution of rms transverse velocity, urms,
and averaged pressure at the front, 〈pf 〉, and rear, 〈pr〉, points
at the cylinder surface with sink strength Q. (c) Evolution
of saturated amplitude urms corresponding to the r.m.s final
value of fluid velocity u(t) versus shedding frequency f .

Fig. 6. Wake vorticity � = ∇× v contours at Reynolds num-
ber Re = 100 when the sink strength Q is increased in steps
δQ = 0.01. Note here the systematic increase of characteristic
wavelength of vortex pattern.

is the Hilbert transform of the real signal u(t). We impose
the slope of |ua(t)| should be less than a small value to
increase the sink strength in another step.

d|ua(t)|
dt

≤ 10−3.

The advantage of this complex signal is that we get both
the instantaneous signal envelope as |ua(t)| and frequency
as f = 1

2π
dϕ
dt at the same time (ϕ is the phase of ua(t)).

With this criteria, starting form the saturated regime
at Re = 100, we performed a continuous cycle for the sink
strength, first increasing and then decreasing it to look for
an expected hysteresis on u(t) amplitude.

Hysteresis is not found, i.e, both the evolution of
|ua(t)| amplitude, as well as the shedding frequency, f , do
not depend on the sense (increase/decrease) of the forcing
cycle for Q.

Role of Q on saturated properties

In Figure 5b we show the evolution of the time-averaged
values of local pressure 〈pf 〉 and 〈pr〉 with sink strength,
both at the front, pf(t), and rear, pr(t), stagnation points
respectively on the cylinder surface.

When 〈pf 〉 ∼ 〈pr〉 we found that the r.m.s. velocity
fluctuation urms approaches to zero (fall into numerical
background noise), which confirms that it is the average
pressure balance that brings back a kind of flow symme-
try, upstream-downstream, found at very low Reynolds
numbers (e.g., Stoke’s flow).

A more rigorous calculation would be to consider the
evolution of a time-averaged pressure coefficient Cp at the
cylinder surface, to compare them with potential flow so-
lution for example. But it is too time consuming and goes
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beyond the global explanation of shedding inhibition of
this work.

The evolution of rms velocity fluctuations urms with
shedding frequency f is shown in Figure 5c. The saturated
amplitude corresponding to the u(t) fluctuations decreases
with increasing Q, as shown in Figure 5b, showing clearly
the presence of a critical value, Q = Qc, where fluctuations
fall into the numerical background noise. The critical value
found here is approximately Qc ∼ 0.05, as can be guessed
in Figure 4d. The fact is that switching the sink on, Q 	=
0, at a given Re, modifies both the shedding frequency,
f (reduces it) and the real part of the most unstable eigen
value, σr. See for instance Figure 4e and also Figure 5c.
The effect can be viewed as if we locally reduce the Re
number, bringing back the flow stable.

A closer look of the wake behavior using the control
method is shown in Figure 6. We show the wake vorticity
contours as a function of the sink strength values between
0 ≤ Q ≤ Qc. As we observe, increasing the sink strength
results in a efficient vortex shedding suppression. The BvK
instability has been inhibited. The evident decrease of ve-
locity fluctuations as well as, of the characteristic shed-
ding frequency or Strouhal frequency, are associated with
an increase of the wavelength of the BvK wavy wake. In
general, this way of control allows a fine tunning of the
characteristic frequency and wavelength of the instability,
simply by adjusting the sink strength.

The mechanism, as we pointed out before, by which
the vortex shedding is suppressed, is deeply related to the
bifurcation of the original stagnation point into two points
located symmetrically with respect to the flow centerline,
at angles ±θo. These new points can be shifted down-
stream if the sink strength is increased.

These new stagnation points appear as a consequence
of the deflected fluid path produced by the active sink. The
overall effect of the method is to achieve a global modifica-
tion of the flow field around the cylinder, specially chang-
ing its pressure distribution. For the unforced case, the
average pressure in the near wake is smaller than the one
near the front stagnation point, and the role of the sink is
to compensate this pressure difference by decreasing the
pressure at the front stagnation. If the pressure field is re-
inforced, the adverse pressure gradient is reduced, bound-
ary layer separation does not occur, vortex shedding is
suppressed and the cylinder’s wake recovers its transverse
symmetry.

Comparison with some experiments

Numerical results were compared with recent experiments
developed at our laboratory, concerning the nature of the
BvK instability. Experiments were conducted in a closed
loop air wind tunnel. The wind tunnel supports two lami-
narization chambers built on aluminium honey comb pan-
els (nominal diameter 6.35 mm) placed before each of the
two test sections. The turbulence level, defined as the ra-
tio of the rms velocity to the average flow velocity, does
not exceed 0.5 % with accuracy better than ±1% on mean
velocity. The BvK instability is triggered over a vertically
aligned long-span circular cylinder (d = 4.0 ± 0.1 mm,

Fig. 7. Schematics of the experimental set up at the wind tun-
nel test section. The wind tunnel facility consists of a closed
loop air wind tunnel with two test sections: a small one of
20×20 cm, and bigger one of 50×50 cm. A wide range of flow
velocities is possible with two independent groups of fans: one
for low velocities using 16 axial DC fans (10 − 200 cm/s) and
one centrifugal blower for higher velocities (2−20 m/s). (1) The
circular cylinder (diameter d = 4 mm, L = 17.5 cm) showing
the small hole distribution with ζ/d = 3.75 and dε = 0.5 mm.
It is bounded by two end-plates (Dp/d = 10)(2) and mounted
on small ball bearings (3). Outside the wind tunnel wall an ac-
curate goniometer (4) is used to determine angle between small
holes and the streamwise flow velocity v0. Cylinder’s top end
joins a vacuum pump through (5) a rapid (up 100 Hz) solenoid
valve. Fluid velocity is measured with a hot wire probe (6) at
y/d = 18.

L = 17.5± 0.1 cm), mounted at the main 50× 50 cm (low
velocity) test section (Fig. 7). Two fine metallic end-disks
were attached to the cylinder ends, in order to avoid the
presence of other shedding modes [21].

As in [12], to decrease the pressure at the front stagna-
tion point, pf (t), we have drilled a very small hole of diam-
eter dε (dε/d 
 1) to connect the surface of the tube to its
inner section, which is connected to an external vacuum
pump, as shown in Figure 7. To get an overall effect along
the cylinder span L, we drilled an uniform distribution
of 11 very small holes (dε = 0.5 mm) along a straight line
at the cylinder’s surface. A step size of ζ/d ∼ 3.75 between
the holes was used. We have chosen a discrete hole distri-
bution instead of a continuous slit because pressure mod-
ulation would not have been possible due to the limited
power of the vacuum network at our disposal (21 m3/hr).

To perform fast pressure changes at the stagnation
point, the vacuum network is connected through a rapid
solenoid valve. The operating local strength, Q in cm3/s,
for the whole sink distribution at the cylinder’s surface
is fixed with a flow meter. For rapid pressure changes a
solenoid on–off valve was triggered with a square TTL
signal. Flow rates Q were measured with a calibrated flow
meter Dwyer VFB series, and can be normalized by a
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Fig. 8. Comparison of dynamic wake response of the BvK instability forced by an step function for the sink strength. Vortex
shedding suppression occurs during the active time of the sinks associated to the high value of the sink step function (denoted
here as TTL signal). (a) Experimental velocity signal recorded at y/d = 18 and slightly off the cylinder axis, performing an
on–off operation of the solenoid valve at Re = 75. Characteristic shedding frequency is fst = 10.7 Hz. A high local sink rate
of Q = 22 cm3/s is used. When normalized by the projected flow rate per unit length Qp = v0d, we get Q/Qp = 1.9 (b)
Normalized transverse velocity fluctuation obtained from our numerical simulation. We display the centerline wake response at
y/d = 18, using a normalized sink strength of Q/Qp = 1.2 for a Reynolds number of Re = 73, close to the experimental value.
(c) Experimental contours of fluid velocity at y/d = 18 for Re = 75, showing the starting BvK instability.

projected flow rate per unit length, defined by Qp = v0d,
to compare sink strength between numerical simulations
and experiments.

Fluid wake–velocity was measured with a calibrated
TSI hot wire probe, 20 µm in diameter and 2 mm long
sensitive length, located at y/d = 13 from the rear end
of the cylinder. It was operated with a constant temper-
ature anemometer developed at our laboratory. Signals
delivered by the anemometer were found to be higher in
amplitude when the probe is located slightly off the center
of the cylinder’s wake at x/d ∼ 13 as it was observed else-
where [19]. Data signals were acquired with a 250 kHz and
16 bits DT322 Data Translation card on a Pentium ma-
chine, previously filtered by a 12 dB/Octave anti-aliasing
filter.

Dynamic tests

Dynamic behavior of the control method means that we
are looking for the forced response of the BvK instability
under a rapid on-off operation of the solenoid valve (TTL
step), which furnishes an approximate step function of the
local sink strength.

Experimentally speaking, both the TTL step for the
valve operation and the velocity signal recording with the
hot wire probe, should be synchronous, i.e., started with
a common trigger signal. The characteristic experimental
wake response is very similar to the numerical one. In Fig-
ures 8a, b, we show two fluid velocity signals from experi-
ment and numerical simulations. We show the normalized
fluid velocity as a function of non dimensional time in both
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cases. Note that the comparison should be qualitative; the
single hot wire probe gives us the absolute value of fluid
velocity instead of the exact transverse fluid velocity u(t)
that we get from the numerical run and because the exper-
iment is in three dimensions whereas the numerical run is
in two dimensions. However, the wake’s dynamic response
is similar. After a few time units from the beginning of
the step function, fluid velocity starts to be damped, the
BvK instability is being inhibited, which means that fluid
velocity fluctuations fall into a background level. Again,
when the step is off, after a few time units the BvK in-
stability develops and the fluid velocity recovers its pe-
riodic behavior. Note that the two figures show that the
damped region and the growing one have different growth
rates. The damped mode is always faster, due to the rapid
fall off of the valve, than the unstable mode.The spatial
extension of the unstable mode can be seen in Figure 8c,
where we display a two dimensional contour plot of exper-
imental velocity data. Operating our system as explained
above, but performing a synchronized transverse scanning
over the overall wake velocity, we get the time evolution
of the BvK instability onset, in the form of contours of
velocity. The starting BvK instability saturates rapidly,
then forming its classical periodic spatial pattern.

From this simple test, we recognize that the control
method modifies the characteristic eigen mode associated
to the BvK instability. The complex growth rate should
involve not only a Reynolds dependence, as it was pointed
before, but also a sink strength dependence. The sink
strength do modify both the real and imaginary parts of
the unstable eigen mode. The imaginary part, associated
to the shedding frequency, is reduced with increasing val-
ues of Q as shown in the preceding section. The real part,
associated to the temporal growth rate of the amplitude
of the BvK instability is shifted to the left of the complex
plane, resulting in negative growth rates or stable eigen
modes, when Q > Qc.

Steady state tests

Here we want to compare the local properties of the flow
field near the cylinder surface, associated to constant and
steady forcing of sink strength Q. As we mentioned before,
the sink induces a bifurcation of the original stagnation
point into two symmetric ones located at both sides of
the cylinder surface.

The angle θo predicted from potential theory was com-
pared to the angle found from our numerical runs. From
our runs we can find these two bifurcated stagnation
points, looking for a local maximum of the surface pres-
sure field p(r = d/2, θ) for different values of Q > Qc at
Re = 100. In Figure 9a we show both the angle θo found
in our runs and the angle given by our potential solu-
tion θo, where we found a very close agreement. This indi-
cates that the front region near the cylinder surface before
the stagnation points occur, looks like an inviscid region,
confirming that the bifurcation mechanism, should be, in
some way, responsible of the subsequent vortex shedding
suppression. When we look at the front stagnation point in

(a)

(b)

Fig. 9. (a) Comparison of the bifurcation angle θo as a function
of the sink strength at Re = 100 for 0 < Q < 0.2 (the nor-
malized interval is 0 < Q/Qp < 3.4). Discrete values (•) were
obtained from our numerical simulation. Continuous curve was
obtained from potential theory. (b) Schematic comparison be-
tween an experimental smoke wire visualization (Re = 110,
Q = 10 cm3/s equivalent to Q/Qp = 0.6), and our numerical
results at Re = 100, Q = 0.07 (or Q/Qp = 1.2), in the form of
contours lines for the stream function Ψ(x, y) where δΨ = 0.1.
Remember that θo decreases with increasing Q.

the free case (sink is off), the local pressure pf (t) changes
periodically in time, with a frequency twice the Strouhal
frequency. That means a stagnation point which is per-
forming small oscillations around θ = π. When the sink
is on, this point disappears and we found two symmetric
ones at ±θo, imposing a new symmetry on the pressure
field around the cylinder. Figure 9b displays both the con-
tours of stream lines of the fluid flow computed from our
numerical runs, and a smoke wire image from our experi-
mental flow visualizations.

These two bifurcated stagnation points, observed over
both slides, are symmetric with respect to the main
flow axis. The fraction of fluid comprised between sin-
gular stream lines, is being pumped from the system in
both cases.

For the smoke wire image, the situation considers a
circular cylinder of diameter d = 8 mm, on a uniform
fluid flow at Re = 110 and individual sink strength is
Q = 10 cm3/s. Sink strength when normalized by the
projected flow rate per unit length, Qp = v0d, gives
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Q/Qp = 0.6. The flow imaging method consists of a green
laser sheet passing through the near wake (and aligned
with the small hole position dε = 0.5 mm), which re-
ceives smoke particles feeded upstream, the scattered light
perpendicular to the laser sheet give us the flow image
recorded with a ccd camera.

Concluding remarks

Numerical simulations of time varying Navier Stokes equa-
tions in a 2D rectangular channel with a cylinder inside,
were performed. The characteristic BvK instability onset
can be delayed through a recent control method based on
the suction of the front stagnation point of the cylinder.
Suction was modelled introducing the idea of a local sink
of strength Q. When the sink is activated, the BvK insta-
bility is damped and vortex shedding is suppressed. Even
though there exists a minimum Q, a critical value Qc from
which vortex suppression takes place, this parameter was
found to depend on the Reynolds number, such that in-
creased Re numbers needed higher Qc values for complete
vortex suppression. Agreement was found between poten-
tial theory and numerical simulations. Qualitative agree-
ment was found on the dynamic and steady state behavior
of the forced BvK instability between numerical and ex-
perimental results. Applications of this method to high
Reynolds number flows, should need an important sink
strength to get vortex suppression, however at reasonable
sink rates, the characteristic properties of BvK instability
will be strongly modified, the shedding frequency reduced,
and the unstable modes shifted toward more stable regions
of the complex plane. Extension of the numerical method
to 3D situations, using particular bluff bodies like airfoils,
are part of a current work.
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trol de la inestabilidad de Bénard von Kármán, Tesis de
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